Commit Graph

1 Commits

Author SHA1 Message Date
rob 5159450feb Add semantic search (RAG) for registry tool discovery
Users can now find tools by describing what they need in natural language.
Uses Ollama embeddings (nomic-embed-text) on AI-Server for vector similarity
search. Available via CLI (registry describe), GUI (AI search row), and API.

New files:
- registry/embeddings.py: core embedding logic (Ollama API, cosine similarity,
  pack/unpack vectors, backfill)
- tests/test_embeddings.py: 16 unit tests

Modified:
- registry/db.py: tool_embeddings table (schema + migration)
- registry/settings.py: embeddings.* settings (ollama_url, model, enabled, min_score)
- registry/app.py: semantic-search endpoint, publish hook, admin backfill/status
- registry_client.py: semantic_search() method with error surfacing
- gui/pages/registry_page.py: AI search row with SemanticSearchWorker
- cli/__init__.py + registry_commands.py: registry describe subcommand

Backfill required after deploy: POST /api/v1/admin/embeddings/backfill

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-02 01:52:27 -04:00