Cascading Development Framework
Go to file
rob 6135d42bc0 docs: comprehensive AI configuration documentation update
Major documentation updates to align with multi-provider AI system:

1. Update CLAUDE.md (lines 213-332)
   - Add new "AI Configuration System" section
   - Document config/ai.yml structure and three optimization levels
   - Explain model hint propagation pipeline (rule → runner → patcher)
   - Add provider setup table (Claude, Codex, Gemini)
   - Document Claude subagent setup with ./tools/setup_claude_agents.sh
   - List implementation modules with line number references
   - Explain environment variable overrides
   - Document fallback behavior when all providers fail

2. Update docs/DESIGN.md (lines 894-1077)
   - Add "Automation AI Configuration" section before Stage Model
   - Document configuration architecture with full YAML example
   - Explain model hint system with .ai-rules.yml examples
   - Detail execution flow through 4 steps (rule eval → prompt → chain → fallback)
   - Show example prompt with TASK COMPLEXITY hint injection
   - Add provider comparison table with fast/default/quality models
   - Document implementation modules with line references
   - Add cost optimization examples (93% savings on simple tasks)
   - Explain environment overrides and persistence

3. Update docs/AUTOMATION.md (lines 70-148)
   - Restructure Phase 2 requirements to emphasize config/ai.yml
   - Add full YAML configuration example with three chains
   - Explain how model hints work (fast vs quality)
   - Update Claude subagent documentation
   - Clarify auto-selection based on TASK COMPLEXITY
   - Move git config to deprecated status
   - Emphasize environment variables as optional overrides

4. Update README.md (line 10)
   - Add "Multi-Provider AI System" to key features
   - Brief mention of fallback chains and model selection

Impact:
- AI assistants can now discover the multi-provider system
- Users understand how to configure providers via config/ai.yml
- Clear explanation of cost optimization through model hints
- Complete documentation of the execution pipeline
- All major docs now reference the same configuration approach

Resolves documentation gap identified in project review.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-01 21:48:25 -03:00
assets feat: add multi-provider AI system with model hint optimization 2025-11-01 21:43:13 -03:00
automation feat: add multi-provider AI system with model hint optimization 2025-11-01 21:43:13 -03:00
config feat: add multi-provider AI system with model hint optimization 2025-11-01 21:43:13 -03:00
docs docs: comprehensive AI configuration documentation update 2025-11-01 21:48:25 -03:00
src build: bundle shared ai config into installer 2025-11-01 14:44:25 -03:00
tests feat: parse codex exec json output for fallbacks 2025-11-01 17:28:57 -03:00
tools feat: add multi-provider AI system with model hint optimization 2025-11-01 21:43:13 -03:00
.gitignore 1st commit 2025-10-27 20:17:35 -03:00
AGENTS.md fix: Add YAML syntax fix and mock AI script for testing 2025-10-31 09:18:59 -03:00
CLAUDE.md docs: comprehensive AI configuration documentation update 2025-11-01 21:48:25 -03:00
GEMINI.md uptodate agents 2025-10-30 13:17:58 -03:00
README.md docs: comprehensive AI configuration documentation update 2025-11-01 21:48:25 -03:00
VERSION 1st commit 2025-10-27 16:24:50 -03:00
pyproject.toml fix: Add YAML syntax fix and mock AI script for testing 2025-10-31 09:18:59 -03:00

README.md

CascadingDev (CDev)

CDev — short for Cascading Development — is a Git-native AIhuman collaboration framework that automates documentation, discussion summaries, and code review directly within your repository.
It lets you build self-documenting projects where AI assists in generating and maintaining feature discussions, design docs, and implementation plans — all version-controlled alongside your code.


Key Features

  • Git-Integrated Workflow — every discussion, decision, and artifact lives in Git.
  • Multi-Provider AI System — automatic fallback chains (Claude → Codex → Gemini) with intelligent model selection (fast/quality).
  • Cascading Rules System — nearest .ai-rules.yml defines how automation behaves.
  • Stage-Per-Discussion Model — separate files for feature, design, implementation, testing, and review.
  • Pre-commit Hook — automatically maintains summaries, diagrams, and vote tallies.
  • Ramble GUI — friendly PySide6/PyQt5 dialog for capturing structured feature requests.
  • Deterministic Builds — a reproducible installer bundle you can unzip and run anywhere.

🚀 Quick Start (Developers)

# 1. Create and activate a virtual environment
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip wheel PySide6

# 2. Build the installer bundle
python tools/build_installer.py

# 3. Test-install into a temporary folder
python install/cascadingdev-*/setup_cascadingdev.py --target /tmp/myproject --no-ramble