""" automation.runner ================= Entry point invoked by the pre-commit hook to evaluate `.ai-rules.yml` instructions. The runner is intentionally thin: it inspects staged files, looks up the matching rule/output definitions, merges instruction strings and delegates execution to `automation.patcher.generate_output`, which handles the heavy lifting (prompt composition, AI invocation, patch application). """ from __future__ import annotations import argparse import sys from pathlib import Path from typing import Dict, Iterable from automation.config import RulesConfig from automation.patcher import ModelConfig, generate_output, run def get_staged_files(repo_root: Path) -> list[Path]: """ Return staged (added/modified) paths relative to the repository root. """ # We only care about what is in the index; the working tree may include # experiments the developer does not intend to commit. `--diff-filter=AM` # narrows the list to new or modified files. result = run( ["git", "diff", "--cached", "--name-only", "--diff-filter=AM"], cwd=repo_root, check=False, ) return [Path(line.strip()) for line in result.stdout.splitlines() if line.strip()] def merge_instructions(source_instr: str, output_instr: str, append_instr: str) -> str: """ Combine source-level, output-level, and append instructions into a single prompt. """ final = output_instr.strip() if output_instr else source_instr.strip() if not final: final = source_instr.strip() append_instr = append_instr.strip() if append_instr: prefix = (final + "\n\n") if final else "" final = f"{prefix}Additional requirements for this output location:\n{append_instr}" return final.strip() # Final, human-readable instruction block handed to the AI def process(repo_root: Path, rules: RulesConfig, model: ModelConfig) -> int: """ Walk staged files, resolve matching outputs, and invoke the patcher for each. """ # 1) Gather the staged file list (Git index only). staged_files = get_staged_files(repo_root) if not staged_files: return 0 # 2) For each staged file, look up the matching rule and iterate outputs. for src_rel in staged_files: # Find the most specific rule (nearest .ai-rules.yml wins). rule_name = rules.get_rule_name(src_rel) if not rule_name: continue rule_config = rules.cascade_for(src_rel, rule_name) outputs: Dict[str, Dict] = rule_config.get("outputs") or {} source_instruction = rule_config.get("instruction", "") for output_name, output_cfg in outputs.items(): if not isinstance(output_cfg, dict): continue if str(output_cfg.get("enabled", "true")).lower() == "false": continue path_template = output_cfg.get("path") if not path_template: continue rendered_path = rules.resolve_template(path_template, src_rel) try: output_rel = rules.normalize_repo_rel(rendered_path) except ValueError: print(f"[runner] skipping {output_name}: unsafe path {rendered_path}", file=sys.stderr) continue # Build the instruction set for this output. Output-specific text # overrides the rule-level text, and we keep the source version as a # fallback. instruction = output_cfg.get("instruction", "") or source_instruction append = output_cfg.get("instruction_append", "") output_type = output_cfg.get("output_type") if output_type: extra = rules.cascade_for(output_rel, output_type) instruction = extra.get("instruction", instruction) append = extra.get("instruction_append", append) final_instruction = merge_instructions(source_instruction, instruction, append) # 3) Ask the patcher to build a diff with the assembled instruction. try: generate_output( repo_root=repo_root, rules=rules, model=model, source_rel=src_rel, output_rel=output_rel, instruction=final_instruction, ) except Exception as exc: # pragma: no cover - defensive print(f"[runner] error generating {output_rel}: {exc}", file=sys.stderr) return 0 def main(argv: list[str] | None = None) -> int: """ CLI entry point used by the pre-commit hook. """ # Parse command-line options (only --model override today). parser = argparse.ArgumentParser(description="CascadingDev AI runner") parser.add_argument("--model", help="Override AI command (default from env)") args = parser.parse_args(argv) # Load the nearest .ai-rules.yml (fail quietly if missing). repo_root = Path.cwd().resolve() try: rules = RulesConfig.load(repo_root) except FileNotFoundError: print("[runner] .ai-rules.yml not found; skipping") return 0 # Instantiate the model config and delegate to the processing pipeline. model = ModelConfig(args.model) return process(repo_root, rules, model) if __name__ == "__main__": sys.exit(main())